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Abstract

Despite the mounting evidence for generative001
capabilities of language models in understand-002
ing and generating natural language, their ef-003
fectiveness on explicit manipulation and gener-004
ation of linguistic structures remain understud-005
ied. In this paper, we investigate the task of006
generating new sentences preserving a given007
semantic structure, following the FrameNet for-008
malism. We propose a framework to produce009
novel frame-semantically annotated sentences010
following an overgenerate-and-filter approach.011
Our results show that conditioning on rich, ex-012
plicit semantic information tends to produce013
generations with high human acceptance, un-014
der both prompting and finetuning. Neverthe-015
less, we discover that generated frame-semantic016
structured data is ineffective at training data017
augmentation for frame-semantic role labeling.018
Our study concludes that while generating high-019
quality, semantically rich data might be within020
reach, their downstream utility remains to be021
seen, highlighting the outstanding challenges022
with automating linguistic annotation tasks. 1023

1 Introduction024

Large language models (LLMs) have revolution-025

ized generative AI by demonstrating unprecedented026

capabilities in generating natural language. These027

successes demonstrate language understanding ca-028

pabilities, raising the question of their utility to-029

wards tasks involving explicit linguistic structure030

manipulation. Not only does this help us under-031

stand the depth of LLMs’ linguistic capabilities but032

also serves to enrich existing annotated sources of033

linguistic structure. In this work, we investigate034

the abilities of LLMs to generate annotations for035

one such resource of linguistic structure, FrameNet036

(Ruppenhofer et al., 2006, 2016): a lexical resource037

grounded in the theory of frame semantics (Fill-038

more, 1985). We propose an approach for language039

1We will release the link to our GitHub repository.
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Growing up, <MASK> are rewarded <MASK>.
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Growing up, children are rewarded often.

Growing up, boys are rewarded for breaking the rules.
reward.v
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Growing up, girls are rewarded for good behavior.
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2. Structure-Conditioned Generation

3. Filter Generations w/ Inconsistent FEs

0. Replace Sister LU

Figure 1: Our framework to generate frame semantic
annotated data. Following Pancholy et al. (2021), we re-
place a sister LU with the target LU in an annotated sen-
tence (0;§2.1). We select FEs appropriate for generating
a new structure-annotated sentence (1;§3.1), and exe-
cute generation via fine-tuning T5 or prompting GPT-4
(2;§3.2). Finally, we filter out sentences that fail to pre-
serve LU-FE relationships under FrameNet (3;§3.3).

generation conditioned on frame-semantic struc- 040

ture such that the generation is consistent with the 041

structure, is acceptable by humans and is useful 042

for a downstream task, namely frame-semantic role 043

labeling (Gildea and Jurafsky, 2000b). Previous 044

works have explored semantic-controlled genera- 045

tion with PropBank (Ross et al., 2021) as opposed 046

to FrameNet, richer in semantic relationships, al- 047

lowing for a deeper evaluation of language models’ 048

semantic understanding. 049
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Our framework for generating frame-semantic050

data leverages both the FrameNet hierarchy and051

LLMs’ generative capabilities to transfer annota-052

tions from existing sentences to new examples.053

Specifically, we follow a frame structure-condition054

language generation framework, focusing on spe-055

cific spans in the sentence such that the resulting056

sentence follows the given frame structure and is057

also acceptable to humans. Overall, we follow an058

overgenerate-and-filter pipeline, to ensure seman-059

tic consistency of the resulting annotations. Our060

framework is outlined in Figure 1.061

Our intrinsic evaluation, via both human judg-062

ment and automated metrics, show that the gen-063

erated sentences preserve the intended frame-064

semantic structure, compared to existing ap-065

proaches (Pancholy et al., 2021). As an extrin-066

sic evaluation, we use our generations to augment067

the training data for frame-semantic role labeling:068

identifying and classifying spans in the sentence069

corresponding to FrameNet frames. However, this070

effort does not yield improvements, echoing ob-071

servations from other studies that have reported072

challenges in leveraging LLMs for semantic pars-073

ing tasks, such as constituency parsing (Bai et al.,074

2023), dependency parsing (Lin et al., 2023), and075

abstract meaning representation parsing (Ettinger076

et al., 2023). These findings prompt further inves-077

tigation into the application of LLMs in semantic078

parsing and the nuances of enhancing model per-079

formance in complex NLP tasks.080

2 FrameNet and Extensions081

Frame semantics theory (Gildea and Jurafsky,082

2000a) posits that understanding a word requires ac-083

cess to a semantic frame—a conceptual structure084

that represents situations, objects, or actions, pro-085

viding context to the meaning of words or phrases.086

Frame elements (FEs) are the roles involved in a087

frame, describing a certain aspect of the frame. A088

lexical unit (LU) is a pairs tokens (specifically a089

word lemma and its part of speech) to the evoked090

frames. As illustrated in Figure 1, the token “disci-091

plined” evokes the LU discipline.v, which is asso-092

ciated with the frame REWARDS_AND_PUNISHMENT,093

with FEs including Time, Evaluee, and Reason.094

Grounded in frame semantics theory, FrameNet095

(Ruppenhofer et al., 2006) is a lexical database,096

featuring sentences that are annotated by linguis-097

tic experts according to frame semantics. Within098

FrameNet, the majority of sentences are annotated099

with a focus on a specific LU within each sentence, 100

which is referred to as lexicographic data; Fig. 1 101

shows such an instance. A subset of FrameNet’s an- 102

notations consider all LUs within a sentence; these 103

are called full-text data; Fig. 1 does not consider 104

other LUs such as grow.v or break.v. 105

FrameNet has defined 1,224 frames, covering 106

13,640 lexical units.The FrameNet hierarchy also 107

links FEs using 10,725 relations. However, of the 108

13,640 identified LUs, only 62% have associated 109

annotations. Our approach seeks to automatically 110

generate annotated examples for the remaining 111

38% of the LUs, towards increasing coverage in 112

FrameNet without laborious manual annotation. 113

2.1 Sister LU Replacement 114

Pancholy et al. (2021) propose a solution to 115

FrameNet’s coverage problem using an intuitive 116

approach: since LUs within the same frame tend to 117

share similar annotation structures, they substitute 118

one LU (the target LU) with another (a sister LU) 119

to yield a new sentence. This replacement approach 120

only considers LUs with the same POS tag to pre- 121

serve the semantics of the original sentence; for 122

instance, in Fig. 1, we replace the sister LU disci- 123

pline.v with the target LU reward.v. However, due 124

to the nuanced semantic differences between the 125

two LUs, the specific content of the FE spans in the 126

original sentence may no longer be consistent with 127

the target LU in the new sentence. Indeed Pancholy 128

et al. (2021) report such semantic mismatches as 129

their primary weakness. 130

To overcome this very weakness, our work pro- 131

poses leveraging language models to generate FE 132

spans that better align with the target LU, as de- 133

scribed subsequently. For the rest of this work, 134

we focus solely on verb LUs, where initial experi- 135

ments showed that the inconsistency problem was 136

the most severe. Details of FrameNet’s LU distribu- 137

tion by POS tags, along with examples of non-verb 138

LU replacements can be found in App. A. 139

3 Generating FrameNet Annotations via 140

Frame-Semantic Conditioning 141

We propose an approach to automate the expan- 142

sion of FrameNet annotations by generating anno- 143

tated data with language models. Given sister LU- 144

replaced annotations (§2.1; Pancholy et al., 2021), 145

we select FE spans which are likely to be semanti- 146

cally inconsistent (§3.1), generate new sentences 147

with replacement spans by conditioning on frame- 148
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semantic structure information (§3.2) and finally149

filter inconsistent generations (§3.3).150

3.1 Selecting Candidate FEs for Generation151

We identify the FEs which often result in semantic152

inconsistencies, in order to replace them. Our se-153

lection of the ideal candidate spans for replacement154

takes into account the FE type, its ancestory un-155

der FrameNet, and the span’s syntactic phrase type.156

Preliminary analyses, detailed in App. B, help us157

narrow the criteria as below:158

1. FE Type Criterion: The FE span to be gener-159

ated must belong to a core FE type.160

2. Ancestor Criterion: The FE should not pos-161

sess Agent or Self-mover ancestors.162

3. Phrase Type Criterion: The FE’s phrase type163

should be a prepositional phrase.164

Qualitative analyses revealed that it suffices to165

meet criterion (1) while satisfying either (2) or166

(3). For instance, in Fig. 1, under REWARDS_AND167

_PUNISHMENTS, only the FEs Evaluee and Reason168

are core (and satisfy (2)) while Time is not; thus169

we only select the last two FE spans for generation.170

3.2 Generating Semantically Consistent Spans171

We generate semantically consistent FE spans for172

selected candidate FEs via two approaches: fine-173

tuning a T5-large (Raffel et al., 2019) model and174

prompting GPT-4 Turbo, following Mishra et al.175

(2021). In each case, we condition the generation176

on different degrees of semantic information:177

No Conditioning We generate FE spans without178

conditioning on any semantic labels.179

FE-Conditioning The generation is conditioned180

on the type of FE span to be generated.181

Frame+FE-Conditioning The generation is182

conditioned on both the frame and the FE type.183

Details on fine-tuning T5 and prompting GPT-4184

are provided in App. C. The above process pro-185

duces new sentences with generated FE spans,186

which align better with the target LU, thereby pre-187

serving the original frame-semantic structure. How-188

ever, despite the vastly improved generative capa-189

bilities of language models, they are still prone to190

making errors, thus not guaranteeing the seman-191

tic consistency we aim for. Hence, we adopt an192

overgenerate-and-filter approach (Langkilde and193

Knight, 1998; Walker et al., 2001): generate multi-194

ple candidates and aggressively filter out those that195

are semantically inconsistent.196

3.3 Filtering Inconsistent Generations 197

We design a filter to ensure that the generated sen- 198

tences preserve the same semantics as the expert 199

annotations from the original sentence. This re- 200

quires the new FE spans to maintain the same FE 201

type as the original. To this end, we train an FE type 202

classifier on FrameNet by finetuning SpanBERT 203

(Joshi et al., 2019), the state-of-the-art model for 204

span classification. Our resulting FE classifier at- 205

tains 95% accuracy, when trained and tested on the 206

standard FrameNet 1.7 splits; see App. A.3. We 207

propose a new metric FE fidelity, which measures 208

the accuracy of generated FE types compared to the 209

originals, computed via our FE classifier. We use a 210

strict filtering criterion: removing all generations 211

where our classifier detects a single FE type incon- 212

sistency, i.e. only retaining instances with perfect 213

FE fidelity. 214

3.4 Intrinsic Evaluation of Generations 215

We evaluate our generated frame-semantic anno- 216

tations against those from Pancholy et al. (2021), 217

before and after filtering (§3.3). We consider three 218

metrics: perplexity under Llama-2-7B for overall 219

fluency and naturalness, FE fidelity, and human 220

acceptance. We randomly sampled 1000 LUs with- 221

out annotations and used our generation framework 222

to generate one instance each for these LUs. For 223

human acceptability, we perform fine-grained man- 224

ual evaluation on 200 examples sampled from the 225

generated instances.2 We deem an example accept- 226

able if the FE spans semantically align with the 227

target LU and preserve FE role definitions under 228

FrameNet; see qualitative analysis on generated 229

examples in App. D. 230

Table 1 summarizes our main results; also see 231

reference-based evaluation in App. E. Our filter- 232

ing approach—designed for perfect FE fidelity— 233

improves performance under the other two metrics. 234

Compared to rule-based generations from Pancholy 235

et al. (2021), our filtered generations fare better un- 236

der both perplexity and human acceptability, indi- 237

cating improved fluency and semantic consistency. 238

Most importantly, models incorporating se- 239

mantic information, i.e., FE-conditioned and 240

Frame+FE-conditioned models, achieve higher hu- 241

man acceptance and generally lower perplexity 242

compared to their no-conditioning counterparts, 243

signifying that semantic cues improve both fluency 244

and semantic consistency. Even before filtering, FE 245

2Human evaluation is done by the first author of this work.
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Before Filtering (|Dtest|=1K) After Filtering (FE Fid. = 1.0)

FE Fid. log ppl. Human (|Dtest|=200) log ppl.(|Dtest|) Human (|Dtest|)

Human (FN 1.7) 0.979 4.358 1.000 4.575 (975) 1.000 (199)
Pancholy et al. 0.953 4.850 0.611 4.984 (947) 0.686 (189)

T5 0.784 4.936 0.594 4.767 (789) 0.713 (156)
T5 | FE 0.862 4.849 0.711 4.725 (850) 0.777 (168)
T5 | Frame + FE 0.882 4.918 0.644 4.824 (873) 0.704 (172)

GPT-4 0.704 4.744 0.528 4.738 (724) 0.723 (132)
GPT-4 | FE 0.841 4.666 0.700 4.638 (838) 0.826 (164)
GPT-4 | Frame + FE 0.853 4.764 0.733 4.717 (845) 0.821 (165)

Table 1: Perplexity, FE fidelity and human acceptability of T5 and GPT-4 generations conditioned on different
degrees of semantic information. Number of instances after filtering are in parantheses. Best results are in boldface.

fidelity increases with the amount of semantic con-246

ditioning, indicating the benefits of structure-based247

conditioning.248

4 Augmenting Data for Frame-SRL249

Beyond improving FrameNet coverage, we investi-250

gate the extrinsic utility of our generations as train-251

ing data to improve the frame-SRL task, which252

involves identifying and classifying FE spans in253

sentences for a given frame-LU pair. Following254

Pancholy et al. (2021), we adopt a modified Frame-255

SRL task, which considers gold-standard frames256

and LUs. We fine-tune a SpanBERT model on257

FrameNet’s full-text data as our parser and avoid258

using existing parsers due to their complex prob-259

lem formulation (Lin et al., 2021), or need for extra260

frame and FE information (Zheng et al., 2022).261

As a pilot study, we prioritize augmenting the262

training data with verb LUs with F1 scores below263

0.75 on average. This serves as an oracle aug-264

menter targeting the lowest-performing LUs in the265

test set. For the generation of augmented data,266

we use our top-performing models within T5 and267

GPT-4 models according to human evaluation: T5268

| FE and GPT-4 | Frame+FE models. Of 2,295269

LUs present in the test data, 370 were selected270

for augmentation, resulting in 5,631 generated in-271

stances. After filtering, we retain 4,596 instances272

from GPT-4 | Frame+FE and 4,638 instances from273

T5 | FE. Additional experiments conducted on sub-274

sets of FrameNet are in App. F.275

Table 2 shows the Frame-SRL performance, with276

and without data augmentation on all LUs and on277

only the augmented LUs. Despite the successes278

with human acceptance and perplexity, our gen-279

erations exhibit marginal improvement on overall280

performance, and even hurt the performance on the281

augmented LUs. We hypothesize that this stagna-282

All LUs F1 Aug. LUs F1
Unaugmented 0.677 ± 0.004 0.681 ± 0.012
Aug. w/ T5 | FE 0.683 ± 0.000 0.682 ± 0.006
Aug. w/ GPT-4 | Frame+FE 0.684 ± 0.002 0.677 ± 0.010

Table 2: F1 score of all LUs and augmented LUs under
unaugmented setting, augmented settings with gener-
ations from T5 | FE and GPT-4 | Frame+FE, averaged
across 3 trials.

tion in performance stems from two factors: (1) the 283

phenomenon of diminishing returns experienced 284

by our Frame-SRL parser; see App. F.2, and (2) the 285

limited diversity in augmented data. Apart from the 286

newly generated FE spans, the generated sentences 287

closely resemble the original, thereby unable to 288

introduce novel signals for frame-SRL. We spec- 289

ulate that Pancholy et al. (2021) are successful at 290

data augmentation in despite using only sister LU 291

replacement perhaps because they use a weaker 292

parser (Swayamdipta et al., 2017), which leaves 293

more room for improvement compared to ours. 294

5 Conclusion 295

Our study provides insights into the successes and 296

failures of LLMs in manipulating FrameNet’s lin- 297

guistic structures. When conditioned on semantic 298

information, LLMs show improved capability in 299

producing semantically annotated sentences, indi- 300

cating the value of linguistic structure in language 301

generation. Nevertheless, despite this success, aug- 302

menting FrameNet does not lead to performance 303

gains on the downstream frame-SRL task, echoing 304

challenges reported in applying LLMs to other fla- 305

vors of semantics (Bai et al., 2023; Lin et al., 2023; 306

Ettinger et al., 2023). These outcomes underline 307

the need for further exploration into how LLMs 308

can be more effectively employed in automating 309

linguistic structure annotation. 310
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Limitations311

This study, while contributing valuable insights312

into the application of LLMs for semantic structure-313

conditioned generation, is subject to certain limita-314

tions that need to be acknowledged.315

Firstly, our research is exclusively centered on316

the English language. This focus restricts the gener-317

alizability of our findings to other languages, each318

of which presents unique linguistic structures and319

semantic complexities. The exploration of LLMs’320

capabilities in linguistic structures manipulation321

and generation in languages other than English re-322

mains an open direction for future research.323

Secondly, we acknowledge that our study did324

not address strategies for increasing the diversity325

of generations, the lack of which is the potential326

cause of the stagnation in data augmentation on327

Frame-SRL. Future work could benefit from incor-328

porating mechanisms designed to improve diversity329

in generated sentences.330

Finally, we do not consider the full complexity331

of the frame semantic role labeling task, which also332

considers target and frame identification. Even for333

the argument identification task, we use an oracle334

augmentation strategy. We find that despite such335

relaxations, the generated data failed to produce336

any improvement in performance.337

Ethics Statement338

In conducting this research, we recognize the inher-339

ent ethical considerations associated with utilizing340

and generating data via language models. A pri-341

mary concern is the potential presence of sensitive,342

private, or offensive content within the FrameNet343

corpus and our generated data. In light of these344

concerns, we carefully scrutinize the generated sen-345

tences during the manual analysis of the 200 gener-346

ated examples and do not find such harmful content.347

Moving forward, we are committed to ensuring348

ethical handling of data used in our research and349

promoting responsible use of dataset and language350

models.351
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A FrameNet Statistics441

A.1 Distribution of Lexical Units442

Table 3 illustrates a breakdown of FrameNet corpus443

categorized by the POS tags of the LUs. Specif-444

ically, we report the number of instances and the445

average count of candidate FEs per sentence, cor-446

responding to LUs of each POS category. The two447

predominant categories are verb (v) LUs and noun448

(n) LUs, with verb LUs exhibiting a higher average449

of candidate FE spans per sentence compared to450

noun LUs.451

A.2 Replacement of non-verb LUs452

Table 4 shows several examples of non-verb LU453

replacement, where the resulting sentences mostly454

preserve semantic consistency. Given the extensive455

number of annotated verb LUs available for LU456

replacement and candidate FEs per sentence for457

masking and subsequent structure-conditioned gen-458

eration, our generation methodology is primarily459

applied to verb LUs.460

LU POS # Inst. # FEs # C. FEs # Cd. FEs
v 82710 2.406 1.945 1.354
n 77869 1.171 0.675 0.564
a 33904 1.467 1.211 1.025
prep 2996 2.212 2.013 1.946
adv 2070 1.851 1.717 1.655
scon 758 1.906 1.883 1.883
num 350 1.086 0.929 0.549
art 267 1.547 1.543 1.408
idio 105 2.162 1.933 1.486
c 69 1.957 0.841 0.826

Table 3: Number of instances and average number of all,
core, and candidate FE spans per sentence, categorized
by POS tags of LUs in FrameNet. C. FEs represents
Core FEs and Cd. FEs represents Candidate FEs.

A.3 Full-Text and Lexicographic Data 461

Table 5 shows the distribution of the training, devel- 462

opment, and test datasets following standard splits 463

on FrameNet 1.7 from prior work (Kshirsagar et al., 464

2015; Swayamdipta et al., 2017; Peng et al., 2018; 465

Zheng et al., 2022). Both the development and 466

test datasets consist exclusively of full-text data, 467

whereas any lexicographic data, when utilized, is 468

solely included within the training dataset. Since 469

our generation approach is designed to produce 470

lexicographic instances annotated for a single LU, 471

when augmenting fulltext data (§4), we break down 472

each fulltext example by annotated LUs and pro- 473

cess them individually as multiple lexicographic 474

examples. 475

B Details on Candidate FEs Selection 476

There are three criteria for determining a candidate 477

FE span, i.e., FE Type Criterion, Ancestor Crite- 478

rion, and Phrase Type Criterion. In preliminary 479

experiments, we have conducted manual analysis 480

on the compatibility of FE spans with replacement 481

LUs on 50 example generations. As demonstrated 482

through the sentence in Figure 1, the FE Type cri- 483

terion can effectively eliminate non-core FE that 484

do not need to be masked, i.e., "Growing up" of 485

FE type Time. Also, the Phrase Type Criterion can 486

identify the candidate FE "for breaking the rules", 487

which is a prepositional phrase. Moreover, we find 488

that FEs of Agent or Self-mover type describes a 489

human subject, which is typically independent of 490

the LU evoked in the sentence. Since FE types 491

within the same hierarchy tree share similar prop- 492

erties, we exclude FEs of Agent and Self-mover 493

types, as well as any FEs having ancestors of these 494

types, from our masking process, as illustrated in 495

Table 6. 496

6

https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:235898904
https://api.semanticscholar.org/CorpusID:235898904
https://api.semanticscholar.org/CorpusID:235898904
https://api.semanticscholar.org/CorpusID:235898904
https://api.semanticscholar.org/CorpusID:235898904
https://api.semanticscholar.org/CorpusID:62163005
https://api.semanticscholar.org/CorpusID:3170713
https://api.semanticscholar.org/CorpusID:3170713
https://api.semanticscholar.org/CorpusID:3170713
https://api.semanticscholar.org/CorpusID:3170713
https://api.semanticscholar.org/CorpusID:3170713
https://aclanthology.org/N01-1003
https://api.semanticscholar.org/CorpusID:254247282
https://api.semanticscholar.org/CorpusID:254247282
https://api.semanticscholar.org/CorpusID:254247282


Frame LU Sentence
Leadership king.n (rector.n) No prior Scottish king

(rector) claimed his mi-
nority ended at this age.

Sounds tinkle.n (yap.n) Racing down the corri-
dor, he heard the tinkle
(yap) of metal hitting
the floor.

Body_part claw.n (back.n) A cat scratched its claws
(back) against the tree.

Disgraceful
_situation

shameful.a (dis-
graceful.a)

This party announced
his shameful (disgrace-
ful) embarrassments to
the whole world .

Frequency always.adv
(rarely.adv)

The temple is always
(rarely) crowded with
worshippers .

Concessive despite.prep (in
spite of.prep)

Despite (In spite of) his
ambition , Gass ’ suc-
cess was short-lived .

Conditional
_Occurrence

supposing.scon
(what if.scon)

So , supposing (what if)
we did get a search war-
rant , what would we
find ?

Table 4: Example sentences of non-verb LUs where se-
mantic consistency is preserved after sister LU replace-
ment. The original LU is in teal and the replacement
LU is in orange and parentheses.

Dataset Split Size

Train (full-text + lex.) 192,364
Train (full-text) 19,437
Development 2,272
Test 6,462

Table 5: Training set size with and without lexico-
graphic data, development set size, and test set size
in FrameNet 1.7.

C Details on Span Generation497

C.1 T5-large Fine-Tuning498

During the fine-tuning process of T5-large, we in-499

corporate semantic information using special to-500

kens, which is demonstrated in Table 7 through the501

example sentence in Figure 1. T5 models are fine-502

tuned on full-text data and lexicographic data in503

FrameNet for 5 epochs with a learning rate of 1e-4504

and an AdamW (Loshchilov and Hutter, 2017) op-505

timizer of weight decay 0.01. The training process506

takes around 3 hours on 4 NVIDIA RTX A6000507

GPUs.508

Sentence After Replacement FE Type
She was bending over a basket
of freshly picked flowers , orga-
nizing them to her satisfaction .

Agent (Agent)

The woman got to her feet ,
marched indoors , was again
hurled out .

Self_mover (Self_mover)

While some presumed her hus-
band was dead , Sunnie refused
to give up hope .

Cognizer (Agent)

Table 6: Example sentences after LU replacement with
FEs of type Agent, Self_mover, or their descendants,
which are compatible with the new replacement LU.
The ancestors of FE types are reported in parentheses.
The FEs are shown in teal and the replacement LUs are
shown in orange.

C.2 GPT-4 Few-shot Prompting 509

When instructing GPT-4 models to generate FE 510

spans, we provide the task title, definition, specific 511

instructions, and examples of input/output pairs 512

along with explanations for each output, as demon- 513

strated in Table 8.

Model Input
No Conditioning Growing up, <mask> are re-

warded <mask>.
FE-Conditioning Growing up, <FE: Evaluee>

<mask> </FE: Evaluee> are re-
warded <FE: Reason> <mask>
</FE: Reason>.

Frame-FE-Conditioning Growing up, <Frame:
Rewards_and_Punishments
+ FE: Evaluee>
<mask> </Frame:
Rewards_and_Punishments
+ FE: Evaluee>
are rewarded <Frame:
Rewards_and_Punishments +
FE: Reason> <mask> </Frame:
Rewards_and_Punishments +
FE: Reason>.

Table 7: Template of finetuning T5 models on an exam-
ple sentence.

514

D Human evaluation of generated 515

examples 516

We perform fine-grained manual analysis on 200 517

generated sentences to evaluate the quality of 518

model generations based on two criteria: (1) 519

sentence-level semantic coherence and (2) preser- 520

vation of original FE types. We present 10 example 521

sentences from the overall 200 in Table 9. 522
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Title Sentence completion using frame elements

Definition You need to complete the given sentence containing one or multiple blanks (<mask>).
Your answer must be of the frame element type specified in FE Type.

Example Input Frame: Rewards_and_Punishments. Lexical Unit: discipline.v. Sentence: Growing
up, <mask> are disciplined <mask>. FE Type: Evaluee, Reason.

Example Output boys, for breaking the rules

Reason The frame "Rewards_and_Punishments" is associated with frame elements "Evaluee"
and "Reason". The answer "boys" fills up the first blank because it is a frame
element (FE) of type "Evaluee". The answer "for breaking the rules" fills up the
second blank because it is an FE of type "Reason".

Prompt Fill in the blanks in the sentence based on the provided frame, lexical unit and
FE type. Generate the spans that fill up the blanks ONLY. Do NOT generate the
whole sentence or existing parts of the sentence. Separate the generated spans
of different blanks by a comma. Generate the output of the task instance ONLY.
Do NOT include existing words or phrases before or after the blank.

Task Input Frame: Experiencer_obj. Lexical Unit: please.v. Sentence: This way <mask> are
never pleased <mask> . FE Type: Experiencer, Stimulus.

Task Output

Table 8: Example prompts for GPT-4 models. Texts in green only appear in FE-Conditioning and
Frame-FE-Conditioning models. Texts in orange only appear in Frame-FE-Conditioning models.

E Intrinsic Evaluation on FrameNet Test523

Data524

To evaluate the quality of generated sentences525

on reference-based metrics such as ROUGE and526

BARTScore, we perform §3.1 and §3.2 on the527

test split of FrameNet 1.7 with verb LUs. As ob-528

served in Table 10, the T5 | FE model surpasses529

others in ROUGE scores, signifying superior word-530

level precision, while GPT-4 achieves the high-531

est BARTScore, indicating its generated sentences532

most closely match the gold-standard FE spans533

in terms of meaning. For reference-free metrics,534

GPT-4 | FE performs well in both log perplexity and535

FE fidelity, showcasing its ability to produce the536

most fluent and semantically coherent generations.537

F More on Augmentation Experiments538

F.1 Additional Augmentation Experiments on539

Verb-only Subset540

Since our generation method mainly focuses on541

augmenting verb LUs, we conduct additional aug-542

mentation experiments using a subset of FrameNet543

that includes only verb LU instances. To ensure544

model performance on a subset of data, we incor-545

porate lexicographic data with verb LUs into our546

training set, resulting in a training set enriched547

with 80.2k examples, a development set compris-548

ing approximately 600 examples, and a test set549

containing about 2k examples. We experimented550

with different augmentation percentages both with551

and without filtering, as shown in Table 11. We552

use an oracle augmenter to augment LUs inversely 553

proportional to their F1 scores from the unaug- 554

mented experiments. To expand coverage on more 555

LUs during augmentation, we augment all LUs 556

rather than limiting to those with F1 scores below 557

0.75. Although the improvements are marginal, the 558

outcome from filtered augmentations is generally 559

better than those from their unfiltered counterparts. 560

561

F.2 Augmenting with Human-Annotated Data 562

To further investigate our failure to improve frame- 563

SRL performance via data augmentation, we con- 564

duct a pilot using original FrameNet data for aug- 565

mentation under our SpanBERT model. We con- 566

duct experiments using increasing proportions of 567

FrameNet training data under three settings: (1) 568

training our SRL parser with full-text data, (2) train- 569

ing our SRL parser with both full-text and lexico- 570

graphic data (which contains 10x more instances), 571

and (3) training an existing frame semantic parser 572

(Lin et al., 2021)3 with full-text data, to control for 573

the use of our specific parser. 574

Figure 2 shows that parsers across all three set- 575

tings exhibit diminishing returns, especially on the 576

second setting, which utilizes the largest training 577

set. This indicates that there seems to be little room 578

for improvement in frame-SRL, even with human 579

annotated data. 580

3Lin et al. (2021) break frame-SRL into three subsequent
sub-tasks: target identification, frame identification, and SRL,
contributing to worse overall performance.
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Frame LU Sentence Original FEs GPT-4 | FE Human
Eval.

Verification verify.v (con-
firm.v)

The bank, upon confirming
<Unconfirmed_content>, re-
leased the goods to the cus-
tomer.

compliance
with the terms
of the credit

the transaction
details

✓ ✓

Distributed
_position

blanket.v
(line.v)

<Theme> lines <Location> and
the lake is covered with ice.

snow many feet
deep, the land

the first snow-
fall, the shore

✓ ✓

Being_located sit.v (stand.v) Against the left-hand wall near-
est to the camera are three stor-
age shelves; <Theme> stands
<Location>.

a lidless unvar-
nished coffin in
the process of
construction, on
the middle shelf

a tall vase, on
the top shelf

✓ ✓

Evoking conjure.v
(evoke.v)

A name like Pauline Gas-
coyne inevitably evoke
<Phenomenon>.

an image of a
bimbo Gazza in
a GTi

memories of a
bygone era

✓ ✓

Event happen.v
(take place.v)

Jamaicans appear to worry little
about the future; sometimes it
seems that they worry little even
about what takes place <Time>.

in the next few
minutes

tomorrow ✓ ✓

Self_motion climb.v
(walk.v)

My mother parked her bicycle in
the shoulder and took my hand,
and we walked <Goal>.

to the top of the
hill

to the park ✓ ✓

Process_materialsstain.v (pro-
cess.v)

If you accidentally process
<Material> <Alterant>, leave
it for a week or two.

walls, with
woodworm
fluid

the wood, too
much

✓ ×

Self_motion creep.v
(make.v)

Matilda took the knife she had
been eating with, and all four of
them make <Path>.

towards the
dining-room
door

their way to the
living room

✓ ×

Hunting hunt.v (fish.v) <Food> too were mercilessly
fished and often left, plucked
and dying, where the sealers
found them.

The albatrosses The penguins ×✓

Change_position
_on_a_scale

dip.v (rise.v) <Attribute> rose <Final
_value> in the summer, but has
recently climbed above $400
and last night was nudging
$410.

The price per
ounce, below
$360

The price, to
$410

×✓

Table 9: Example Generations of GPT-4 | FE, our best model according to human acceptance. The two marks in
human evaluation represent whether the generations satisfy the two criteria individually: (1) sentence-level semantic
coherence and (2) preservation of all FE types. A sentence is deemed acceptable only when it satisfies both criteria.
The new replacement LUs are presented in orange or parentheses. Masked FE spans are presented in teal and their
corresponding FE types in angle brackets.

9



BARTScore ROUGE-1 ROUGE-L Perp. FE Fid.
Human - - - 4.82 -
T5-base -5.939 0.301 0.298 6.105 0.829
T5-FE -5.922 0.318 0.316 6.074 0.840

T5-Frame-FE -6.179 0.276 0.274 6.090 0.843
GPT4-base -4.060 0.228 0.227 4.452 0.880
GPT4-FE -4.336 0.218 0.217 4.419 0.930

GPT4-Frame-FE -4.395 0.210 0.209 4.472 0.929

Table 10: Log BARTScore, ROUGE scores and log perplexity of generations on FrameNet test set without LU
replacement.

All LUs F1 Aug. LUs F1
Unaugmented 0.751 0.779
5% Aug. w/o filter 0.745 0.778
5% Aug. w/ filter 0.752 0.781
25% Aug. w/o filter 0.752 0.776
25% Aug. w/ filter 0.753 0.781

Table 11: F1 score of all verb LUs and augmented LUs
in augmentation experiments using different percent-
ages of augmentations generated by T5 | FE with and
without filtering, compared to baseline results without
data augmentation. Best results are in boldface

0.050.10 0.25 0.50 0.75 1.00
train data percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
 sc

or
e

fulltext data + lexicographic data
fulltext data Lin et al.
fulltext data
Lin et al. on SRL

Figure 2: Learning curves for our frame-SRL model and
Lin et al. (2021)’s end-to-end parser show diminishing
returns on adding more human-annotated training data.
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